
I.-,——
*D—A056 763 UTAH UNIV SALT LAKE CITY DEPT OF CHEMISTRY F/G 20/li

RAYLEIGH—BRILLO4JIN SCATTERING AND STRUCTURAL RELAXATION OF A V I—— ETC ( U)
.JUL 78 Y — LINt C H WANG N0001’4 75 C—0908

UNCLASSIFIED TR—19 NL
I~~ l

~~~ 6163 F

At



Ii ~EVE11
t~ 

OFFICE OF NAVAL RESEARCH — —

~

Contract No. NOOOl4- 75-C-O9O8~
Task No. NR 051-562

TECHNICAL REPORT NO. 19

Rayleigh - Rrillouin Scattering and Structural

Relaxation of a Viscoelastic Liquid- i

by

>~

Y. -H. Lin and C. H. Wang

. . r ) DCPrepared for Publication

in the 
1918

Journal of Chemical Physics U

Department of Chemistry
University of Utah

Salt Lake City, Utah 84112

July 1 , 1978

Reproduction in whole or in part is permitted for any purpose of the
United States Government

Approved for Public Release; Distribution Unlimited

- 

78 07 1 ~ 00~4



____ 
—________ 

________________

• ,. 
•
~.;: 

..

~~
.
‘
. 

~~~ ~ 
~~~~~~~~~~~~ ~~~~~ ~~~~~~ ~~~~ 

‘ ? ) : ~~~~~
• 

- . ... . I . . - ~~ ~.- — 
-

.

Unclassified
SICURITY CLASSIFICATION OF T HIS PAGE (iTh~ n bit. F,.t..r.d)

REPORT DOCUMENTATION PAG E B E F O R E  FORM
• I. NIPORT NUMBER 12. GOVT ACCESSION NO. 3. 5&E$~~IENT S C A T A L O G  NUMBER

19 ~
. I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~2~ QR 0
~~P~~RT A P~~nIO~~~~~ V EREo

~
( 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r . r f~
.,

-. .. ~~~~~~~~~~~ 5 PERPORMING~~~~~~~~ t PORT NUMBER

- 6. CONTRACT OR GRAN T N BER(a)

I Y ~H / L i f l  
~ 

C H /wang ‘~2_.d r~00014 ;5 .~90~7
•. PERFORMING O R G A N I Z A T I O N  NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJ ECT . T A S K) A R E A  6 WORK UNIT NUMBERS

• Department of Chemistry
University ?~ 

Utah ..- NR 051-562
• 1 

Salt Lake Ci ty ,  Utah 84112
II. CON r ROLLING ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~

I.~~ TOR ING AGENCY NAME & A DORr5~~~1 dIll.r.nI fr om Coni,oltina 0111 ci) IS. SECURITY CLASS.  (oI thu r.po rt)

Unclass i f i ed
-
.4 

___________ ISa.
SCHEDULE

13. DISTRIB UTION S T A T E M E N T  (of thu R.poru )

• a. According to the attached distribut ion.

b. Others may obtain copies of this report from the Office ,if Technical
Services, Department of Commerce.

17. DIST RIBUTION STATEMENT (of lb. .b.ft.cf .nl.,.d In Block 20, II diIl.r.nt from Report)

te.  SUPPLEMENTARY NOTES

To be published in the Journal of Chemical Physics 
.

IS. KEY WO RDS (ConhIn u. on ,.v., .. aid. II n.c.aaary and IdentIfy by block numb. ,)

Rayleigh scattering linear response theory
Brillouin scattering Landau-Placzek ratio
structural relaxation
viscoelastic fluids

• hydrodynamics
• ARSI RAC T (ContIn u. on rive ra. aid. SI n.c.a..ry and Identify by block numb.,) . .

—~The linear response theory using a complete set of 
dynamic variables i n v o l v in g

density, velocity and energy fluctuations is used to analyze the Rayleigh-
Brillouin spectrum of a viscoelastic liquid. An exact equation including the
effect of structural relaxation has been obtained . The result is discussed in
the fast and slow relaxation limits. In the former case , the Rayleigh-Bri l-
b u m  spectrum is identical to that predicted by the classical hydrodynamic
equations, whereas in the latter case a new structural central peak is found .

• in addition to the anomalous disper n nd r ac~~ion e fe s pre n

DD ~ 1413 IDITION Or I NOV 63 IS OBSOLETE



RAYLEIGH-BRILLOUIN SCATTERING AND STRUCTURAL

RELAXATION OF A VISCOELASTIC LIQUID . I

Y . -R. tin and C. H. Wang

Department of Chemistry

University of Utah

Salt Lake City, Utah 84112

- U



r 
• - — . --- 

~~~

•--_____ ____ _

Abstract

The linear response theory using a complete set of dynamic variables

• involving density, velocity and energy fluctuations is used to analyze the

Rayleigh-Brillouin spectrum of a viscoelastic liquid. An exact equation in-

cluding the effect of structural relaxation has been obtained . The result

is discussed in the fast and slow relaxation limits. In the former case,

the Rayleigh-Brillouin spectrum is identical to that predicted by the classi-

cal hydrodynamic equations, whereas in the latter case a new structural cen-

tral peak is found, in addition to the anomalous dispersion and relaxation

effects present in the frequency and linewidth data associated with the Bril-

b u m  peak. The evolution of structura l relaxation and its effect on the en-

tire Rayleigh-Brillouin spectrum is described . The structural central peak

is most pronounced with the frequency dispersion and the linewidth maximum

are present . The theoretical result has been used to calculate the Rayleigh-

Brillouin spectra of polypropylene glycol at various temperatures . The re-

sults of the frequency shift , the spectral linewidth and the Landau-Placzek

ratio are in good agreement with the experiment .
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I. Introduction

The study of molecular dynamics of a viscoelastic liquid using

the Rayleigh—Brillouin scattering technique is of current research

interest. Rayleigh—Brillouin scattering arises from density fluctu-

ations and the scattering spectrum contains information about the

translational motion of an ensemble of molecules. in a viscous molec-

ular liquid consisting of polymeric molecules , interactions between

molecules as well as between segments of the same molecule play a very

important role in the Rayleigh—Brillouin spectrum. In such a system,

a considerable frequency dispersion as well as a maximum in the line—

width of the Brillouin doublet are known to occur .’ Accompanied with

the frequency dispersion and linewidth anomaly , one also finds sig—

• nificancly more intensity distributed in the region between the un—

• shifted Rayleigh and Brillouin peaks than that found in a simple

molecular liquid . These experimental results cannot be accounted for

in terms of the classical hydrodynamic theory of simple fluids .2

To explain the anomalous sound dispersion and attenuation maximum

of a highly viscous liquid, Esakovich and Chaban3 have provided a phe—

nomenological theory in which the viscous liquid is modeled as a “micro—

inhomogeneous mediu&’ consisting of several regions. The occurrence of

diffusion and energy exchange mechanisms between different regions of the

medium is shown to be responsible for the attenuation of the hypersonic

wave. Although this theory can qualitatively account for the dispersion

and attenuation phenomena of the hypersonic wave in polymeric liquids,
4

it does not have a satisfactory statistical mechanics foundation.

We have recently used the linear response theory to analyze the

Brillouin scattering results of bulk liquid polypropylene glycols (PPC)



• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

• and polyethylene glycols (PEG). The analysis was carried out using a

two coupled variables (density and velocity) theory , and the theoreti—

• cal result was found capable of giving a satisfactory interpretation

of the frequency dispersion and linewidth data in both PPC5 and PEG .6

It was shown that the second moment of the intersegmental interaction

potential and its associated relaxation dynamics are responsible for

the anomaly found in the linewidth and frequency shift of the Brillouin

peak. The theoretical results cannot , however , account for the entire

Rayleigh—Brillouin spectral distribution, due to the fact that energy

fluctuation is not included in the theoretical analysis.

In this paper , we report the result of a comp 1~ te theoretical anal-

ysis of the Rayleigh—Brillouin scattering sper~.trum using the linear re-

sponse theory . This theoretical result includes the energy fluctuation

and is applicable not only to the frequency shift and l.inewidth data of

a polymeric liquid but also to the intensity ratio between the Rayleigh

and Brillouin components. We also show how the structural relaxation

mechanism can give rise to a new central peak. This new central peak

is due to coupling between the translation and the structural rearrange-

ment motion in a viscoelastic liquid. We draw an analogy between this

• dynamic structural central peak and the central peak associated with the

structural phase transition in ferroelectrics and the translation rota—

tion coupling in orientationally disordered solids. We show how the

central peak disappears in the limit of fast modulation.

• II. Theory

For a viscoelastic liquid made up of a collection of identical

scattering elements, the isotropic part of the Rayleigh—Bri]louin spec—

trt~ observed at scattering angle 0 is determined by the qth mode of

L
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the Fourier transform of the time correlation function of density fluc—

tuations given by

C (q, t) ~so(q,t)Sp *(q,o)> (1)

where tSo (q,t) is the qth mode of the fluctuation of density , q being

the scattering vector whose amplitude is given by qi ~ sin

Here is the wavelength of the incident light and n being the index

of refraction of the liquid . In this section , we shall study the

density fluctuation in viscoelastic liquids by calculating the qth

mode of the density fluctuation spectrum .

For an isotropic fluid system, it is easy to see by svuw~etrv con-

siderations that density (5p), velocity (V) and energy (Se) fluctuations

form a set of three dynamic variables , which do not couple to any other

variables. These are given respectively by

(2)
j

(3)
i

i

— ~ j~~ (
~ 

2 + ~ 2 + ~ 2~ + ½ E U 1 
}~~i~ z j  (4)

j  :1 j  i j i•j j

where in Eqs. (2)— (4 ) the direction of the scattering vector q is chosen

to be along the z—direction . X
j ~ Y~ and Z

j  
are the coordinates of the

jth scatterer . En a polymeric fluid these can be regarded as the coor-

dinates of the jth segment of a polymer chain. V is the component of

velocity in the direction of q, as the transverse components will not

be coupled to the density fluctuation and thus have no ef fect  at all on

the oolarized Rayleigh—Brillouin spectrum of an isotropic fluid system.7

is the interaction potential between scatterers i and •j .  In Eqs.

(2 )— (4) ,  the q dependence in 6p, V and 1St is not written out, explicitly .
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The set of variables defined in Eqs. (2 )— (4 )  ( S n, V . ( Sc )  gives rise

to the co llective motion of a sound wave . The dynamic behavior of the

collective variables are mostly conveniently described by relaxation

functions determined by variables not included in (Sp, V , and Sc .  To

analyze the effect of relaxation on (S p , V and (Sc , we use the Zwanzig—

• Mon formalism. 8 We shall show that the final equations obtained are

capab le of describing the sound dispersion and attenuation behavior

in a polymeric liquid . We shall also show that in the limit of fast

relaxation the equations reduce to the usual hydrodynamic results.

A) Dynamic equations

We start from the assumption that for the time scale of interest ,

the dynamics of the system is governed by the evolution of the set of

secular variables (ISI , V, Sc). We use the Zwanzig—Mori projection

operator technique to calculate the motion of secular variables . Be-

fore proceeding, we note that the quantity ~~~~~~ is non—zero . There-

fore , we use , instead of Sp, V and (Sc , a set of orthonortaal variables

A given by

A —  (~~2 J  (5)

where

— 6 p / < I ( S o t 2~~ (6)

V / < V V > ½

- r - n~ 1] /l-n2

~~JA -
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and

~j ( 9)
I I -’ ~

~~~~~~~~~~~~~~~~ ~~~~~~~~

From the definition given above, one has <AA ~
’> -1 , where I is

a 3x3 unit matrix . The angular brackets indicate an ensemble average.

We show in Appendix I that if local equilibrium is assumed 
~~ 

is pro-

portional to the temperature fluctuation .

For the column vector A of dynamic variables, the equation of

motion is given formally by the Liouvtlle equation

~~~ A ( t )  — iLA(t) (10)

where L is the classical Liouville operator governing the time

evolution of A(t). While it is straightforward to write down a

formal expression for L in terms of the kinetic and potential energy 
• 

-

operators of the system, in practice this is seldom done for a corn—

plex molecular system such aa a polymer, due to its large number of

internal degrees of freedom and the intermolecular and intramolecular

potential functions. For the present work it is only necessary to

utilize the formalistic synseetry properties of the Liouville operator

such as time reversal, reflection and translation syinsietry. In its •

formal, definit ion the Liouville operator is self-adjoint . j
Following the well known procedure the equation of m otion for

8
A(t) can be shown to follow a generalized Langevin equation,

r t

j~~A(t) — i~34~ t) — J dr ~(r)•~~(t—r ) + ~‘(t) (11)- 0
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where the frequency matrix is given by

2 — (T...A)A~ , (12)

other quantities are given by

K( -r ) — sF ( -r )F ~~> ( 13)

F ( )  — 
iQLT F ( 14)

F — i Q L A  ( 1 5)

where Q — (1—P),P being the projection operator defined as

PG - <GA’
~
’> <AA~~> ’

~~A (16)

7
In the small q limit , Eq. (14) can be approximated by

— e~~
t F (17)

Substituting Eq. (5) into Eq. (12), and with the help of Eqs. (6)—(8) ,

we obtain the frequency matrix

o u
~
(
T °

0 S (18)

0 S* 0

where

— q(....’......
) 

< ( S 0 r 2 > (19)

Equation (19) reduces to the well known result q(p~~1) ½ in the

small q limit. Here XT is isothermal compressibility.

The parameter S is given by
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I _________________

S - <(L~2)~~3*~ - 
~~~~~ [ < V 2 >½

~~~~~~~2 >½ 
_
~~ T } 

(20)

and is real only in small q limit. We shall show shortly that S

is related to the difference between the isothermal and adiabatic

sound frequencies.

The dissipation part can be calculated by the following . Accord-

ing to Eq. (15), one can readily find that

- 1 0 \
F — Q i L A i LA — i ~1A ( f2 ) (21)

\ f 3/
where

f2 — iL~~ 
— iU

~T~ 1 — iS~ 3 (22 )

and

iL~ 3 — iS~~., 
(23)

Thus the memory function matrix K( r)  has the general form,

/ 0  0 o
K(r) — ( 0 K22(t) 0 ) (24 )

0 0

where K22 (r)  a <f2(r)f 2*> and K33(T) — <f3(T)f3*> . K23(t) and K32(t)

vanish at r—0 and are assinned to be negligible at finite r.

Equation (11) together with the frequency matrix given in Eq.

(18) and the memory function matrix given in Eq. (24) can be solved

by the Laplace transform technique. Taking the Laplace transform

on both sides of Eq. (11), we obtain,

X( z)A (z) — [zI — i~ + ~ (z) A(z) — A(o) + F(z) (25) 
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where A(~) and K(~ ) are the Laplace transforms of ~~( t )  and ~~( t ) ,

respectively . The expression forX(~) is given by

/ 
Z 1

~T 
0

X(z) — 
t
\

T z+K2 2 (:) —is ) (26)

0 ~iS~ Z+K33(z)

The Rayleigh—Brillouin spectral density is eqt~al to the real part

of ~~~~~~~~~~~ . Thus we only need calculate this quantity from

Eq. (25). From Eq. (25) and also using the fact tha t ~F(.~)c 1*> — 0,

we obtain after some calculation ,

<~ j(z)~~i*> {(z +K~2(z))(z+K33(z)) + S }  (27)

where :: is the deterainant of X(z), and is given by

X — rz(z +K22(z)) +wT
2] [z +K 33 (~ )] + ZS 2 (28)

The Rayleigh—Brillouin spectral density is thus equal to

I(q,~ ) —

[z + K 22 (zfl (z+K33(zfl + S2
Re (29)

[z (z +K22(z)) + 
~T

l +K 33(~ )1 + iS 2

Equation (29) is the dynamic equation describing the density—

density fluctuation. This equation will be used to interpret the

Rayleigh—Bri llouin spectra of a viscoelastic liquid in Section IV.

B) Adiabatic freguenqy

Before proceeding to study the property of the dynamic equation,

we want to associate the quantity S with the well known physical

quantity. One can relate the quantity S to adiabatic sound frequency
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by diagonalizing Eq. (18). This gives rise to three eigenvaluea

— ç2+Sz — (30)

— V~ I 2 + SZ — —u~ (31)

X 0 0 (32)

The corresponding normalized eigenvectors are found to be

~ ( ~~ ) (33)

and

S
us

0 (34)

S

I.

In the absence of relaxation effects, 
~~ 

can be expressed in

terma of $~~and~~0 as

- 

<~~~~I 2 >½ 
-

~~~~~ 
(
~~+ + :~~- -÷ /~~)

The eigenvectors b~ 
and ~ are associated with undamped acoustic

waves propagated with frequency w 5 and —w 5 respectively. The third

eigenvector 4~ 
is associated with the unshifted Rayleigh central peak .

The intensity of each peak is proportional to the square of the co— I.
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I!
efficient of the corresponding eigenvector. Thus, with the help of

Eq. (~5), we obtain the Landau—Placzek ratio as

s2 us2LP - — — — 1 (36)
B T T

Since the Landau—Placzek ratio in the absence of relaxation is

equal to y—l , where y is C
~/c , it follows i=ediately the result

— PcWT, which is the adiabatic sound frequency .

- 
III. Effect of Relaxation

To consider the effect of relaxation we need return to Eq. (29).

The resonance property of I(q,w) depends significantly on the quanti—

ties K22(iu) and K33(iw) as well as the values of u T and u .  This

can be seen by equating to zero the denominator on the right hand side

of Eq. (29) after setting z — iu,

(~~)3 + [A~~(w) + X 3(~ ) ]  + iu (X2(w)X 3 (w) + +

0 (37)

where

— K11(iw) 
i,f’ e~~’~ K~~(t)dt 

- 

(38)

Because of Eq. (38), Eq. (37) is in general a complex equation

of frequency and does not yield a simple solution. Nevertheless, it

can be shown that in the limit of small q, the memory function is a

decaying function of time and for simplicity can be approximated as

—c itKj i(t) c&
1
e i (39)

where ~~~ — Kij (o)
~ 

and are the correlation times given by
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I
i 

— K
1i

(t)dt (40)
ii(o) ~0

In this approximation , we obtain from Eq. (38)

t
i

— 

~i i+iur~ 
(41)

Using Eq. (41), one sees that Eq. (37) is at least fourth order

in ~i , and it leads to a four peak structure in the Rayleigh—Brillouin

spectrum . We now consider two limiting cases.

A) Fast relaxation, ‘/t i > 
u

In this case A 1 becomes c*~t~ and Eq. (3-7) reduces to

(iw)3 + (iu)2 [c12T2 + ~3t 31 + (iw) (~~2t2 cL 3T 3 +u9
2 J +

1

W
T~~~3 T3  — 0 (42)

which is exactly the results obtained from the linearized equations of

hydrodynamics~ Rayleigh—Brillouin scattering spectra predicted by

this equation have been discussed extensively in the literature.
7

Equation (42) has three roots: two correspond to the Brillouin

side bands and one to the unshifted Rayleigh peak. For most liquids the

condition >> (i — 2 ,3) applies, and one ~an obtain the three

L roots of Eq. (42) by a perturbation technique. The results are given

by

— ±~ + i [(1 — -~~ ) c13T3 + ~ 2t2 J  (43)

— + i-~ cs~ r~ 
(44 )

Thus we note that in the fast relaxation limit, due to the large

value of 1/t~ (i — 2 or 3) the peak frequency of the sound wave is de—

--.  ~
..—e. —- - - - . .- -

~~-—- -- -——-- -—--~~~
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termined by 
~~ 

and its width by n1t 1
. The width of the unshifted

Rayleigh peak is determined only by cs313,

To give a comparison with the hydrodynamic result , one makes

the following identificatiOnS:

~~2 T 2 
-
~~ D~~

2 (45)

-~~ ~~~~ (46)

whe~re D
~ 

and DT are the longitudinal kinematic viscosity and the

thermal diffusivity, respectively. These are related to shear

viscosity ( r~~) ,  bulk viscosity ( n )  and thermal conductivity (A) by

— (n + ~~)/mp (47)

— X/m %C~ (48 )

Here the various symbols have their usual meanings.

Using the expressions for K~~(t) (Eqs. (22) and (23)) one can

also obtain microscopic expressions for the transport coefficients.

The microscopic expressions for the transport coefficients have been

given in the literature. The dynamics of the density fluctuation in

the fast relaxation limit was first discussed by Mon .
9

B) Slow relaxation,

This is the relevant case for most viscous liquids, and under-

standing of this case is necessary for analysis of the Rayleigh—

Bnillouin data in polymeric liquids.

Since the dynamics of thermal conduc tivity processes has only a

negligible effect on the relaxation behavior of the sound wave, the

a
—



— —---

1.)

frequency dependence of )~ can be ignored . Thus one can set

A 3 — a3r 3 (49)

and
a2 t 2

— i+~~-
~~ 

(50)

where r, will be referred to as the structural relaxation time.

One further substitutes Eqs. (49) and (50) into Eq. (37) to find its

solution for w. The computer calculation of the spectrum using the

exact expression, Eq. (29), has shown cha t a
1 
( i2 ,3) is only a

fraction of for a polymeric liquid (see Section IV). Therefore,

Eq. (37) can be solved as a perturbation of a~Iw 5
2 . The perturbation

solution of Eq. (37) to first order in a
1
/w
5
2 (i—2, 3) gives four roots

u1 — ~~3T3  — iDq2 (51)

— ±u ± -~~~ 2~~~~2
2 

i
± S 2 (1+( u r2)

2] + 2(1+(u 5t2)
2
~

- 
(52)

{a2r2 + (1 — - )(a 313 +w 2T2
2ct3T3)}

1 ~2~ 2
U)

2 
- — 

1 +U) 2T 2
2 (53)

One sees that the root w j  is identical to the unshifted Rayleigh

peak given in Eq. (44), indicating that it is free from the effect of

structural relaxation provided that the frequency dependence of A 3 is

ignored. The roots u÷ correspond to a high fr equency doublet with

resonance centered around the real part of u~ and the width given by

the imaginary part. The peak frequency as well as the linewidth of

the Brillouin doublet are modified significantly by the effect of

- -
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structural relaxation. One notes that Eq. (52) reduces to Eq. (43)

in the limit of u) t~~~~~O .

A new feature in this case is the presence of an additional

central peak with its width given by Eq. (53). The width or this

central peak is determined by the structural relaxation and shows

a frequency dependence due to its coupling to the sound wave.

The perturbation solution given in Eqs. (S 1)- (53 )  are new results.

These are important for the interpretat ion of the Brillouin scattering

spectra of viscoelastic liquids. We should remark that these roots

differ from Mountain ’s results on thermal relaxation arising from the

coupling of internal degrees of freedom of molecules to transla—

tion. 
— 

Mountain has shown that such a coupling gives rise to

a relaxation central peak whose linewidth is given by (v /v)21/t ,

where V
8 

and v are the low frequency adiabatic sound velocity and

the sound velocity at finite frequency, respectively; t is the thermal

relaxation t ime . Our expression is somewhat s impler than Mountain ’s

expression for thermal relaxation.

The Brillouin frequency and linevidth given in Eq. (52) also

differ from Mountain ’s result. Despite the fact that Mountain deals

with thermal relaxation due to coupling of the internal degrees of

freedom to translation and we are concerned with structural relaxation

due to coupling of internal as well as external degrees of freedom

to translation, the difference between the two results is due to

different methods used. tn the present work a general statistical

mechanical theory is employed to analyze the structural relaxation

phenomena, whereas in Mountain ’s calculation a modified Navier—S tokes

equation allowing for a frequency dependent bulk viscosIty is used.
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The validity of the modified hydrodynamic equation in a form given

in ref. 10 is yet to be established .

It is interesting to note that structural relaxation has a

significant effect on the Rayleigh—Brillouin spectrum of a polymer

liquid consisting of flexible polymer chains. At high temperature

the structural relaxation rate is fast compared with the frequency of

the hypersonic wave and In this case the structural relaxation con-

tributes mainly to the Brillouin doublet (Eq. (5~)) through the

c*2t2 term. In this case the intensity of the structural central

peak is smeared out over a wide range of frequency and is not detect-

able (see Fig . 3A). At intermediate temperature when the structural

relaxation rate ~~ is the order of 
~ 

the linewidth of the Brillouin

component doublet displays a maximum. This can be demonstrated by

taking the derivative of the imaginary part of Eq. (52) with respect

to and then setting the result to zero. This gives 12 in terms

of u~. In this case, the hypersonic velocity displays considerable

dispersion [c. f .  Eq. (52 ) 3 ,  and the linewidth of the structural

central peak is approximately equal to 
~ 5

. Thus the structural central

• mode contributes significantly to the intensity of the Brillouin

doublet (Fig. 3B) as well as the intensity in the region between the

unshifted Rayleigh and the Brillouin peaks. At low temperature, on

the other hand, the structural relaxation rate is slow compared to the

hypersonic frequency, but fast compared to the thermal diffusion rate;

in this case the structural relaxation manifests itself as a broad line

centered at the laser frequency (see Fig. 3D). Lastly at temperatures

close to the glass transition temperature, the structural relaxation

is very slow or nearly frozen—in, and the structural central peak
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becomes very narrow and hidden under the ordinary Rayleigh diffusion

peak (see Fig. 3F).

We remark finally that the central peak due to structural relaxa-

tion has a close analogy to the dynamic central peak associated with

the structural phase transition in ferroelectric crystals
12 

as well

as with the central peak in oriencationally disordered crystals

which arise as a result of the dynamic coupling of translation

and rotation. In fact the treatment given in the present work is

closely parallel to chat given in ref. 13 for dynamics of translations

and rotation in molecular crystals.

• C) Rayleigh—Brillouin spectral density

Using Eq. (29), we can also obtain an expression for the Rayleigh—

Brillouin spectrum as a function of frequency. For this we separate

A 2(w) and A 3(w) into real and imaginary parts,

~ a~ (u) + ia 2 ’ ’ (w )  (54)

— a~ (w) + ia 3’’(u) (55)

Substituting Eqs. (54) and (55) into Eq. (29) and after carrying

out some algebraic manipulations, we obtain 
-

N iD 1 + N2D2
I (q,W ) — (56)

- 
D12 +D 2

2

where 
*

N1 - (1 +
a2
~ 

(U)) ) (~ ÷
3~ (w) ) 2 +a~ (w) a~ (w ) 

~~
( i (57)

a2 (u) a3 (w)
N2 — ~ a2’(w)+a3’(w)+ u a3 ’ (w) +a2 ’(u) ~ (58)
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D1 —w2 [a2~ (u) +a3 ’(w) + 
a2 ’ (W) 

a3 ’ (w ) +
(59)

____

~ 

~~~~~~~~~~~~~ a
y S

, , ,
— w [_ ~ 2 (1 + 

a2 (u) (1 + 
a3 (w) 

~ +

(60)
(1 + (w) 

~ 
+

The detailed forms of a21(u), a2 ’(u) , a3 ’(w) and a3 ’’(o) depend

on the specific time dependence of the memory functions 1(22(t) and

1(33(t). There are techniques available to obtain the asymptotic

frequency dependence of X2(u) and X3(u). For example if short—time

dynamic processes are important in determining the memory functions,

one may expand X .(u) in a power series in and calculate the

moments of memory functions.
14 

On the other hand, if the long—time

dynamic processes are important, we may expand X .(u) in a power series

in u. However, for the purpose of illustrating the effect of structural

relaxation i.t suffices to use here the functional forms given by Eq.

(43.) for the calculation of the Rayleigh—Brillouin spectrum in the

entire frequency region.

In the next section, we shall apply the present theoretical re—

* suits to interpret the Rayleigh—Briliouin spectrum of a highly viscous

polymeric liquid such as polypropylene glycol. We shall show that the

structural relaxation plays a very important role in determining I(q u)

and in order to account for the experimental results it is very

important to retain the frequency dependence in X2(w), although the

frequency dependence of X 3(w) is unimportant. In the subsequent

section we suprese the frequency dependence of )~3 and equate it to



• •— -~~~~
- 

. ‘-‘•— - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

YDTQ
2. 

18

IV. Comparison With Experimental Results

We now use Eq. (56) together with Eqs. (57)—(60) and Eq. (41)

and a least squares fitting procedure to calculate the Rayleigh—

Brillouin spectrum , using the parameters suitable for polypropylene

glycol (PPG). The data considered are the frequency shift, linewIdth

and the Landau—Placzek ratio as a function of ~.emperature.

For the comparison we first use a trial and error procedure to

compute the spectrum at high temperature such that the theoretical

spectrum fits the measured one. This gives a set of reference data

points needed for subsequent calculations of the theoretical spectra

at other temperatures.

The reference data set consists of w~5, r2, a2 and DT appropriate

for the high temperature (400 K) spectrum of PPG M.W. 425. To

obtain results for the spectra at other temperatures, we assume that

12 has an Arrhenius temperature dependence

12 12
0 exp(Ea/kT) (61)

This assumption is justified from the experimental results for

4
PPG. Thus instead of r2 we replace it by t

~~
° and Ea for calculating

the results at other temperatures.

Since accurate experimental data for the frequency shift

linewidth (~) and intensity are available for PPG—425,1 we have found

that the following least squares fitting procedure is most economi—

cal in computer time. We used Eq. (56) to obtain theoretical values

for and r and then compared with the observed and r until the
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standard deviation (in the least squares sense) between the experi-

mental and theoretical values are simultaneously minimized . This

procedure gives a tentative set of parameters •
~~~~

, 1~~ °~ E~1 i~ ~z 
and

Dr, which are consistent with the observed frequency and linewidth

values. To improve the theoretical fit , we calculate the intensity

and compare the results with the experimental data. This is accom—

lished by a fitting cycle to check the self—consistency of all

experimental data available. In cycle 1 , we use the best values

parameters u~ , 12 ° , £~~, a~ and D
T. This set gives a good fit to all

values of and I , but it may not fit the intensity properly . The

set of parameters is then varied to generate the best integrated inten-

sity results for Rayleigh and Brillouin peaks. In this process , a new

set of parameters are generated to fit the frequency and linewidth.

The cycle is repeated until the set of parameters fits sirnultaneously

all of the ~3, r and intensity results.
In the process of curve fitting, we have found that the intensity

of the central Rayleigh component is affected significantly by the

value of DT. Furthermore, we have also found that the values obtained

for can be correlated with an Arrhenius equation given by

D,~° e~~t
°
~~
T (62)

with D
T
° — O.98(C1!z)/q2 and E

~
° — 3.16 kcal/mole. This gives the value

of yD~~
2 equal to 4.9 MHz at 300 IC. The theoretical fits to the experi-

mental data of and r are also improved if the temperature dependence

of u is allowed. This is expected as the adiabatic sound frequency is

expected to decrease with increasing temperature . Thus for convenience

we assume

0
u (1—mT) (63)

S 5

- •
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The best values of the parameters are ~~ ii CHz and ru 0.)017 K ’.
_ IL.

Using these we obtain E — ~~ kcal/mole , r~ 2.36 x 10 sec and

— 0.~ 38 ~~~2 for the best fit. i, is fairly insensitive t~~ the

temperature change. We have tried other temperature dependences for

and have also obtained good fits to both and r , but the results

obtained for Ea differ within 15% at the most. This is about the

experimental error involved in determining Ea~ 
With all of the para-

meters available , we have calculated the and values as a function

of temperature. The results are shown in Fig. 1 , together with the

experimental values for comparison. The agreement is quite good . The

slight deviation for the range between 300 and 350 K is due to the

assumed simple form of Eq. (63). The calculated Landau—Placzek values

for PPG—425 for the temperature range between 185 and 400 K are shown

in Fig . 2, together with the experimental results.

Due to the presence of the structural relaxation , a few words

about the determination of the Landau—Placzek ratio are in order . In *

Fig. 2, the calculated intensity ratio excludes the intensity contri-

bution from the structural central peak. While this is easily done

theoretically, it is difficult to accomplish experimentally, especially

in the temperature region where the structural relaxation is most

pronounced. Efforts were made to minimize the contribution from the 
S

.

structural relaxation in determining the accurate Landau—Placzek ratio.

This was done by first integrating the Brillouin intensity beyond

the peak frequency . The total Brillouin intensity of each peak is

assumed to be twice this value. This thus neglects a small correction

due to lineshape asymmetry , and due to the intensity at the wing from

the structural central peak. The error arising from this procedure
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is insignificant at both high and low temperatures. However , in the

temperature range where the structural relaxation is most significant

the error is somewhat larger . The Raylei gh intensity was determined

by first extrapolating the wing of the Rayleigh peak to the baseline

and then integrrting the intensity . This tends to over—estimate the

intensity by including a small contribution due to the structural

• central peak , but the error is believed to be small in this case . The

Landau—Placzek ratio data determined this way are thus more reliable

than those reported in ret . 1. One notes in Fig . 2 that the agreement

between theoretical and experimental results is rather good . The

larger discrepancy in the temperature range between 220 and 300 K is

presumably due to the experimental difficulty in separating accurately

the Rayleigh and the Brillouin intensities from the complete experi-

mental spectra.

Using the obtained best set of parameters appropriate for

PPG—425, we have then computed the Brii.louin—Rayleigh spectra using

Eq. (56) , together with Eqs. (57)—(60) and Eqs. (49) and (50).

Six representative theoretical spectra at 400, 350 , 310, 280, 240

and 200 K are shown in Fig . 3A—F . These spectra clearly demonstrate

the evolution of the effect of structural relaxation on the Rayleigh—

Brillouin spectrum. These spectra when convoluted with the instru— •

mental function are in good agreement with the observed spectra , thus

indicating that the present theory is adequate in interpreting the

Rayleigh—Brillouin scattering of polymeric liquids in which the

structural relaxation plays a very important role. In Fig. 3, one

notes that while the width of the Brillouin doublet increases with

decreasing temperature between 400 and 310 K, there is an increase
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in the intensity in the region between the Ravlei2h and the BrilJouin

peaks . This is associated with the central peak due to structural

relaxation , similar to the ~Aountain peak observed in simple molecular

liquids.lS~~
t) 
However,as the temperature is decreased further , the

Brilloujn peaks narrow and the structural central peak becomes

gradually localized to the wing area of the thermal diffusion Rayleigh

peak. The behavior of the structural central peak is remarkably

sensitive to the temperature variation .

• V .  Suxmnary and Conclusion

We have used the linear response theory to analyze the Rayleigh—

Brillouin scattering spectrum of a viscoelastic liquid. The theory

includes a complete set of dynamic variables involving density,

velocity and energy fluctuations . An exact equation including the

• effect of structural relaxation has been obtained . In the fast

relaxation limit it is shown that the Rayleigh—Brillouin scattering

is identical to that predicted by the classical hydrodynamic equation.

New results are obtained for the slow relaxation case. In this case *

it is shown that in addition to the unshifted Rayleigh peak a new

central peak is also present . This new peak is due to dynamic

coupling of the translational motions of the scattering particles

with collective structural relaxation, in analogy to the Mountain

peak which arises from the coupling of translation to intramolecular

vibration of simple molecules . Our theoretical results for the

Brillouin peak and the central peak linewidth differ from those ob—

tam ed by Mountain in the case of thermal relaxation. Mountain ’s

calculation is based upon modified hydrodynamic equations and ours is

U 
• 

_
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in terms of the generalized Langevin equation derived by using Zwanzig-.

Mon ’s projection operator technique. The structural central peak

considered here is analogous to the dynamic central peak associated

with the phase transition in solids.

We have described the evolution of structural relaxation and its

• effect on the Rayleigh—Brillouin spectrum. The structural central

peak is most pronounced when the frequency dispersion and the line—

width maximum are present . We have also used the theoretical result

to calculate the Brillouin frequency shift, spectral linewidth and

the Landau—Placzek ratio as well as the entire Rayleigh Brillouin

spectrum as a function of temperature. We show that the theory

including structural relaxation gives a good fit to the experimental

results of polypropylene glycol.
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Appendix

We show here tha t the dynamic variable 
~~ 

defined in Eq. (8

in the text is proportional to the temperature fluctuation.

Since 6p (q) and ~Sc(q) are related to dp(r) and âc(r) by
7

~ L.. 
6 p (r)e~~

’
~ d3r (A—i)

and

~~~q) d3r (A—2)

where ~p (r) and dc (r) are respectively the fluctuations in number

density and energy density .

If the system under consideration is in local equilibrium, then

from the first law of thermodynamics, we have

~ T sS s+( ° ° ) ~5p (A—3)
p0

where T , p
0
, 
~~ 

and p0 are respectively the temperature, number

density, energy density and pressure at equilibrium. &s 5S/V ,

V being the volume and ~Ss the entropy fluctuation per unit volume.

Using thermodynamics , one also has

ISD C
— &p + 

~~~~ 
dT (A—4)

P O XT o

~Sp and ~ST are independent thermodynamic variables so that <~ pdT> — o.
17

Substituting Eq. (A—4) into Eq. (A—3), we obtain

1/ S ~+_P0~ ~~r.
‘SC — I t  - I — dp + mp C óT (A—5)

t \ P0 / PQXT
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and

c + o  aT
- [( o .

o). 
~o~T J 

~~~~~~~~~~~ (A-6)

Alter establishing Eq. (A—6) , we consider 
~~ 

(Eq. (8))

~3 •1 ~ - 
1 

- 6c(q)  -
\I i  -~~2 /  <~ ‘S c (q)J2~~

(A-7)

<5c (q)’Sp*(q)>dp (q)

Using Eqs. (A—i) and (A—2) , we can write

- J f d3rd 3r ’ ~~~~~~~~~ <‘Sc(r)âp(r ’)>

- [c
0 +P0 

- f d3rd~r’ ~
iq ~ ~ ‘) 

<d p (r)óp (r’)>

[€ +p
— — 

~0~
° <~ 6 p ( q )j 2 > (A—8)

Substitution of Eq. (A—8) into Eq. (A— 7) gives

1 / c +p 
____

_____ 
tSc (q) — —

/1 — n2 - \ P~

I’. 6P(~)~

Using Eq. (A—5), one can reduce this equation isunediately to

mp C
• — ° 

_____ 
‘ST(q) (A—b )

<~~~~~~~~~I~~~~> /1—n~
2

Thus 
~~ 

is proportional to ‘ST(q).
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Figure Capt ions

Figure 1. Comparison of the measured and calculated Brillouin

peak frequency and linewidth data of PPG 425 as a

function of temperature.

igure 2. Comparison of the measured and calculated Landau—

Placzek ratio data of PPG 425 as a function of tem-

perature .

Figure 3. Simulated Rayleigh—Brillouin spectra for PPG 425.

(A) at 400 K, 12w — 0.12; (B) at 350 K, t 2u ~~ — 0.34 ;

(C) at 310 K, 12w — 0.91; (D) at 280 K, t 2w
~ 

— 2.2;

(E) at 240 K, r2w — 9.1; and (F) at 200 K, t~~ w
5 

64.

-• • ••
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Figure 1.
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Figure 2.
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Figure 3.
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